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ABSTRACT

This thesis examines some cost/performance models for high

cost, low demand insurance items. The motivation for this

research is the lack of such analytical methodology in the

Israeli Navy (I.N.). The models maximize selected supply

measures of effectiveness and minimize average annual holding

and backordering costs. The models have the ability to rank

individual items in such a way that, under a constraint of an

annual provisioning budget, only those that contribute the

most to the objective function are selected for stocking.
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I. INTRODUCTION

A. MOTIVATION FOR THE RESEARCH

A survey done by the inventory planning section in the

Israeli Navy's (IN) Headquarters revealed that, in 1988, more

than 60% of its inventory value was invested in systems and

spares that experience an average demand rate of one unit or

less over a three-year period. Those items, according to the

I.N. regulations, were classified as slow moving items (both

consumables and repairables). A careful look at the 1000 most

expensive slow movers indicated that they accounted for 80% of

the value of the Navy's inventories over that time period.

While most of the IN's items are managed using inventory

levels which use estimated demands rates and other parameters,

slow moving, expensive items are excluded from these

procedures. In a few cases, levels are determined manually,

but those levels are not updated on a regular basis by the

Navy's item managers.

The situation is even worse when we look at the I.N.'s

capability to do an initial provisioning determination of what

to buy. In that case, the I.N. has to put its trust

completely in vendors and contractors because no analytical

tools or models exist to determine which slow movers are to be

stocked. Decisions are made, not based on analytical models,
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but based on a subjective evaluation by the item managers.

More than five years ago, the head of the material

Logistics Support department in the I.N. Headquarters ordered

the development of an analytical method that would facilitate

making decisions on what quantities to buy, both for initial

provisioning (new weapon systems) and for the annual

replenishment review (performed by the item managers). Since

no serious work has yet been done on this topic in the I.N.,

this thesis began the development of a replenishment model for

slow movers. The first step was to determine what was

available in the literature on models to manage inventories of

low demand items. However, this area does not appears to be

a very popular one in the operations research journals.

Although most of the valuable references were from the 1960s

and 1970s, they are still the most useful in that area and

give some useful suggestions on modeling.

B. THESIS OBJECTIVES

There are four thesis objectives:

- To review past analyses and determine the relevant
important issues concerning the problem of managing slow
moving items.

- To review the deficiencies of the I.N.'s current attitude
toward replenishment procedures for slow movers.

- To derive and analyze costs and supply measures of
effectiveness (MOEs) models for the replenishment
problem.

- To illustrate, with an example, how the suggested models
work, and to apply a sensitivity analysis to the models.
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C. SCOPE

The models developed in this thesis consider only

expensive slow-moving consumable items. The models assume a

demand of one unit at a time for each item and a demand during

lead time which is Poisson distributed. The models do not

allow lost sales but backorders are assuted to be allowed.

The reorder point is assumed to be zero and the reorder

quantity is limited to zero or one unit only. The models

consider two types of objective functions, average annual

costs to hold and backorder, and supply effectiveness

measures. An annual procurement budget constraint will be

consider for some of the models.

D. PREVIEW

Chapter II reviews the literature and discusses problems

associated with managing items having of low demand rates.

Chapter III reviews the I.N.'s replenishment procedure and

problems in dealing with low demand items. Chapters IV and V

present models to help decide on whether to stock or backorder

an expensive insurance item. Chapter VI provides a numerical

example showing how the proposed models work. It also

provides a sensitivity analysis for the example. Chapter VII

includes a summary, conclusions and recommendations.

3



II. BACKGROUND

A. INTRODUCTION

he purpose of this chapter is to mention some of the more

interesting points and discussions found in the professional

literature on the problems of provisioning and controlling

slow movers.

Any inventory organization must face the problem of

stocking expensive slow-moving items. However, the literature

is limited in this area and many of the publications are old

ones. Some of the most useful papers were written by the

field investigation group of the National Coal Board in London

in 1962 [Ref. 1].

B. DIFFICULTIES IN SLOW MOVER PROVISIONING

Provisioning consists of the collection of steps taken to

assure adequate supply of equipment and material to an

organization to support its ultimate goals in the most

efficient way. Reference 2 provides an overview of the

difficulties of conducting such a process when low demand

spares are involved.

There are four specific difficulties:

- The inadequacy of past records in giving reliable
estimators of future consumption of spares or life
characteristics of a part (this is in contrast to fast
movers whose consumption rates for short periods do serve
as excellent estimators of future demand).

- The inflexibility of slow movers. While overstocking of
fast moving spares is quickly remedied by natural

4



The inflexibility of slow movers. While overstocking of
fast moving spares is quickly remedied by natural
consumption, such is not the case with slow moving
spares. Initial overstocking can burden an organization
for a long time, with high holding costs being added to
an incorrect initial investment.

The sensitivity of slow movers to variation in lead
time. While fast movers can be easily adjusted to a
variation in lead time, overstocking problems can occur
for slow movers in cases of decreaeig lead times.

Slow-movers can cause extra costs and waiting time when
found to be out-of-stock. This is in contrast to high
rate demand items which experience shorter lead times,
have quite a few spares and cheaper provisioning costs.

C. CLASSIFICATION OF SLOW MOVER PROBLEMS

Mitchell, in his paper (Ref. 2], gives a comprehensive

classification of slow moving types and a recommended solution

for each type. Figure 2.1 summarizes his classification.

Slow Moving Spares

I' i I
Specials Adequate Inadequate

cases Warning WarningI I
Order for a delivery Do not hold in Random Wer
to arrive as late as stock -
possible before date
of use Usage of cost/

performance
models

Figure 2.1 Classification of Slow Moving and
Recommended Methods of Controlling Them
[Ref. 2].
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Special cases are those where items are bought for

specific projects, overhauls or other purposes. In these

cases, uncertainty is very low. The best solution is to

procure the needed inventory so that delivery occurs as

shortly as possible prior to use (in order to avoid holding

costs).

The adequate warning cases are those in which we have

warning signs of needing the item long before it is actually

needed (the warning time should exceed the lead time). Here,

the optimum policy is not to hold the items, but rather to

order them as soon as warning signs show up (warning could be,

for example, updates to the working plan for a specific fiscal

year, or preliminary approval of a new operational need for

the next several years). We should have a high level of

certainty that the item is not needed on a day to day basis,

in order to be successful with the policy of not stocking the

item now.

Inadequate warning is both the most complex and the most

interesting to deal with because of the high degree of

uncertainty involved. Two subcategories exist. The first

corresponds to random failure with failure rates being time-

independent (i.e, the same average rate of failure holds

during the entire life cycle of the spare). The second case

concerns items with increasing failure rates with age (wear-

out items).
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In the inadequate warning cases, the best stocking

solution results from optimization of an expected value

objective function which may also be subject to a real

limitation such as budget constraint. The usual objective

functions are measures of cost or efficiency of performance.

D. DEMAND DISTRIBUTION

The Poisson distribution, as common as it is, does not

always apply to every set of demand data. In the early stages

of research, this author searched for other probability

functions (other than the Poisson distribution) which would be

adequate to describe the nature of demand for slow moving

items. However, the literature contained very little in the

way of suggestions for the probability mass function for those

low demand rates. Some of the papers [Ref. 2] argued that, in

cases where the Poisson distribution fails to give a good fit

to the data, the second best option is to use the empirical

distribution based on the historical data.

Two other probability mass function were suggested in the

literature. The first one deals not with the demand

distribution mass function, but with looking for a more

precise parameter estimation of the mean of the Poisson

distribution (namely %). In some cases, when X is not known in

advance or the old data used for estimating A has a huge

variance over the mean, using the Gamma distribution can be

helpful [Ref. 3]. The Gamma distribution is a two-parameter
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distribution, where a is known as the shape parameter and p is

the scale parameter. The Gamma distribution density function

is given by:

fe(;aP) -AaAP-1  (2.1)
r (P) &P <

where X is the random variable and r(p) is the Gamma function

of p.

If p is a positive integer, then r(p) - (p-1)!. The

expected value of X is E(k) - pa, and the variance is

Var(k) - pce [Ref. 3]. Figure 2.2 illustrates the gamma

density function as a function of several values of the two

parameters, a and p

1.00

0.75

0.50

0.25

P$ 4

0 1 2 3!

Figure 2.2. The Gamma Distribution [Ref. 31.
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The advantage of using a two-parameter distribution

density function is that the distribution can take many

different shapes, as shown in Figure 2.2 (depends on the

values of a and p), and gives more information about the data

than that provided by the simple point estimator of X. In

particular, it is known [Ref. 4] that when a > 1, it

corresponds to a wear-out (increasing) failure rate type. Of

course, when a = 1, we have the exponential density function

reflecting a constant failure rate over time.

The parameters of the Gamma function can be estimated by

the mean p and the standard deviation a of the old data in the

following way [Ref. 3]: :

a 2 P 2

S= 7 P - - (2.2)

Another demand distribution which may apply to slow-moving

items modeling is the "stuttering Poisson" distribution.

While it does not fit every slow demand case, it is worth a

try when demand is "lumpy" [Ref. 1]. This is also a two-

parameter distribution which assumes a Poisson distribution

for the number of requisitions submitted over time, and a

geometric distribution for the quantity demanded in each

requisition. The resulting probability mass function is:

(1-p)At nR(t) , Jj- -pJ- Rna or 0 < n < o* (2.3)
n 1=1
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where:

R(t) - the probability that n units are demanded
in time interval t.

- the average arrival rate of requisitions.

p - the geometric distribution parameter describing
the expected number of units demanded in each
requisition.

and R(t)- e-(xt).

This distribution gives better results than the Poisson

distribution when the requisition arrival rate is very small

but the number of units demanded in each requisition is not

[Ref. 1].

E. INITIAL PROVISIONING MODELS

Burton and Jaquette's paper [Ref. 3] serves as the basis

for the models developed in this thesis. It provides a

procedure for deciding which items to stock in support of a

new weapon system or a piece of equipment. Even though

Reference 3 deals only with initial provisioning (when the

items/systems are first stocked in the supply system), their

models could be applicable for the annual replenishment

procedure as well. These two cases can be modeled in a very

similar way. In both cases they assume:

- There is a budget, limiting the amount which can be
procured.
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- The expected annual costs of holding and backordering
the item for any stocking policy (e.g., don't stock,

stock one, stock two, etc.) can be derived as a function
of the number of units to stock.

- The supply system measures can be determined as a

function of the number of the units to stock.

While the models derived later in this thesis are based on

some of the models suggested by the Burton and Jaquette paper

[Ref. 3], they are more cost-oriented and focus only on the

case of annual stock replenishment.

F. DIFFERENT STOCKING RULES--A CASE STUDY

The literature also provided a case study which

demonstrates the problems associated with stocking slow movers

[Ref. 5]. In particular, the case shows how simple stock

decision rules can fail for low demand items.

Data were gathered from the U.S. Navy for the "Falcon"

aircraft, a large jet aircraft with more than 15,000 spare

items. The data were used to generate the distribution of

observed demands associated with 100 Falcons over a 13-month

period. Examination of these data showed that low demand

items represented about 85% of the possible candidates for a

mobility package (a kind of a field repair kit for the jet).

This 85% accounted for only about 10% of the quantity of items

consumed, even though they were critical parts. During the

13-month period, nine out of ten "grounded" aircraft (90%)

suffered shortages of low demand items. Over half of these

11



parts had no demand during the previous month.

Approximately 20% of the items (3,049 out of 15,000) were

classified as extremely low demand items (i.e., with a demand

rate of 0.035 per month or less). A provisioning policy was

clearly needed for these items. Such a policy needed to

consider both the very low demand rate of such items and the

fact that half of the "grounded" cases were caused by these

items. Three general policies were considered:

- No inventory will be stocked for these 3,049 items.

- One unit for each item will be stocked.

- Two units from each item will be stocked.

Table 2.1 shows the results from stocking according to

each of these policies for the one-month protection interval

desired by a kit. The probability of demand was assumed to

follow the Poisson distribution with a mean of 0.035 units per

month for all items. The table was computed by comparing the

stocking decision (stock 0,1 or 2) with the probabilities of

demanding 0,1,2 or more units over a period of one month. The

numbers represent the average number of items in each

category.

12



TABLE 2.1

SPARES PROVISIONING POLICIES FOR ITEMS WITH A 0.035 DEMAND
RATE PER MONTH

Possible Probability of Policy and Expected Supply Result
demand such demand Po icy Surplus Cons. Shortaae

0 0.965 stock zero 0 0 107

1 0.034 stock one 2942 107 3

2 0.001 stock two 3045 107 0

The supply results represent the expected number of items

(out of 3,049) that ended up with surpluses, or shortages (the

column headed "Cons" represents the expected number of items

having demands equal to the quantity stocked). As Table 2.1

shows, there is an impressive reduction in the expected number

of items in shortages (down from 107 items to three items when

one unit of each item was stocked, and to zero when two units

of each item were stocked). The negative consequences of such

policies are also clear. The expected surpluses caused by no

demands for the one or two units stocked of each part is

extremely high. Even though dollar figures were not included

in [Ref. 5], it is obvious that a large amount of money would

have been invested in items that will not be consumed rapidly.

The major conclusion in this case is that these general

stocking decisions do not work well when low demand rate items

are involved. Stocking "one of each item" or "none of each

item" created excessive surpluses. A better approach would be

to base the stocking decision on an individual item basis.

13



This would allow for consideration of the demand distribution

for each item, as well as certain relevant measures of

effectiveness. The models in Chapter V are based on such an

approach.

14



III. THE I.N. CURRENT REPLENISHMENT MODEL

As mentioned in Chapter I, the I.N. lacks analytical tools

to manage its inventory of slow movers. In particular, the

stocking decisions for the expensive slow movers are not

justified by any economic analysis or any measure of

effectiveness. The decision is made by each item's inventory

manager based on his best engineering judgment and knowledge

of the budget constraint for that year. Cheap slow movers are

managed by automated procedures which do not differ from those

used for fast movers. In many cases these automated procedures

create excessive backorders or excessive on-hand inventory.

A. CURRENT REPLENISHMENT MODEL

The I.N. has several hundreds of thousands of items which

are classified as active items (have at least one transaction

in the last three years). Those items which do not move in

three years will not be of interest in this analysis.

The active items are grouped technologically (electronics,

mechanics, tools, etc.) for budgeting purposes. Annual

replenishment is done in most cases by the item managers

located in the Central Logistic Base (C.L.B.). Exceptions are

handled by special authorized officers at Navy Headquarters.

Each item has three inventory levels. The lowest one is

the "standard level" needed for operation of the fleet. This

15



is called the "red line" because assets should never fall

below that point (similar to the idea of the "war reserves" in

the U.S. Navy). The next inventory level is the reorder

point. When assets fall below the reorder point, it triggers

the ordering of the item. The maximum inventory level is the

level an inventory manager orders up to for a given item. The

I.N goal for this level is somewhere between 2.5 and 4.2 years

of forecasted demand for an item (computed by demand rates

from the last three years). The average goal is three years

of forecasted annual demand.

The I.N. uses an old provisioning table to determine

maximum inventory levels. The entry into the table requires

knowing the estimated unit price of the item and the dollar

value of its annual forecasted consumption rate.

The forecasted annual demand rates values used in the

provisioning table are computed as follows:

17C3 502 5CV

where:

CI, C2, C3 - the consumption rates for the current
year, last year and two years
previous.

16



P1, P2, P3 - the portion of time the item was in
service in the last three years (if
the item was bought for the first
time in the current year, P2 and P3
would be zero).

The formula is a simple weighted average with the same weights

being used for all items (whether they are fast or slow

movers). A 0.5 round rule is used to insure C is an integer.

As items become more expensive, the maximum level dictated

by the provisioning table decreases. This is intended to

avoid using up the budget for only expensive items. For

example, if an item costs less than 1000 Israeli shekels, the

provisioning table will specify a maximum inventory level of

3.5 years of consumption. The next entry (for an item that

costs more than 1000 shekels) will recommend a maximum

inventory level of 2.8 years.

It should be emphasized that the computerized recommenda-

tion for inventory levels, and the quantities to purchase, can

be overridden by the item manager, if he has knowledge of

other constraints.

There are two problems with the provisioning table:

- Nobody knows what this table attempts to achieve. It
does not support any MOE and just ensures not buying
material that is too expensive.

As indicated in the introduction (Chapter I), it does
not apply for very expensive items.

Each year all active items are reviewed for replenishment

according to a predetermined schedule (similar to a periodic

review process). The data used in the process are the

17



inventory levels and a modified inventory position (defined as

on-hand inventory + on-order quantities, without backorders

considered). In addition, when the inventory position reaches

the reorder point, the computer issues an "item review report"

which alerts the item manager to consider a replenishment

action.

B. DEFICIENCIES OF THE CURRENT "MODEL"

There are four major drawbacks to the current "model":

- Equation (3.1) is very insensitive to low cemand.
Because of the 0.5 round rule, most cases whei low
demand rates are involved will have a forecasted demand
of zero, resulting in zero buy quantity. This may well
be incorrect.

- The current model does not deal with the probabilistic
nature of low demand items. The model used today is
a deterministic one which is more appropriate to use
with regular and stable demands rates.

- The I.N. apparently does not take into consideration any
backordering or holding costs. This affects the ability
to assess the desirability of stocking an item or
backordering it (and supplying it later on).

- The current replenishment "model" does not consider any
supply MOEs. There is no definition of what the supply
system is trying to achieve when buying one quantity
level instead of another. The only considerations are
the judgments of the item managers and the allocated
budget for that year. The annual budget is not
justified in terms of different supply MOEs, but rather
in terws of the previous year's budget and what people
"feel" they need to stock.

The rest of this thesis investigates several possible

models for "insurance" type items that do include costs and

performance measures.

18



IV. INTRODUCTION TO COST/PERFORMANCE MODELS
FOR SLOW MOVERS

This chapter contains three sections:

- Model assumptions.

- Basic steady-state formulas for on-hand inventory and
backorders.

- Derivation of measures of effectiveness.

The next chapter will present the completed forms of the

models.

A. MODEL ASSUMPTIONS

Before presenting the models, which are the core of this

thesis, we need to state the basic assumptions needed for the

derivation of the models.

1. The Replenishment Process

We are interested in a multi-item decision model for

managing the inventory of slow movers. The model will assume

annual continuous review model in which an annual budget will

be allocated to item procurement. The quantity to buy of each

item should optimize one of several different measures of

effectiveness. As stated earlier, the models should also

satisfy the initial provisioning situation where the slow

movers are new and have not been stocked yet (they are

classified as slow movers at this stage by the vendors or the

contractors).
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2. Constraints and MOEs

This thesis considers two kinds of problems. The

first one is the unconstrained problem where each individual

item is considered for stocking based only on optimizing some

system objective function (annual average costs or supply

MOE). The second problem considers the same objective

function as the first, but also involves a provisioning budget

limitation which may constrain the solution if the budget is

small. The various models presented in Chapter V involve

three basic ways to include backorders in the objective

function:

- Expected number of backorders per year.

- Time-weighted units short per year.

- Combination of the two methods above.

The objective functions for the models represent both

the economical side and the supply performance side of the

stocking decision. Specifically, three objectives are

considered:

- Minimize the average annual costs.

- Minimize the aggregate mean supply response time.

- Maximize the aggregate supply material availability.

3. Stocking Alternatives

Because this thesis is concerned with expensive,

"insurance"-type items, the decision to be made is whether to

stock one unit of an item or not to stock it at all. Stocking

more than one unit is assumed to not be appropriate, even
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though it could be considered as an alternative in some cases

(especially if demand rates are increasing).

4. SatisfyinQ the Demand and Provisioning Funds

Two conditions relative to funding for procuring

additional units are needed for the steady state analysis.

First, the assumption must be made that any demand occurring

during the year will be met without exceptions. This

contrasts with the case of lost sales, where unfilled demands

are allowed. The second assumption states that the

provisioning funds during the year will be sufficient to meet

all demand. This assumption can be satisfied in two ways.

Either an adequate estimated budget for the entire year is

given at the beginning of the fiscal year, or an initial

budget is allocated at the beginning of the year and

additional funds may be requested throughout the year to meet

the demand. The second option is more realistic for the I.N.

During the year, four reviews are being held. During

these reviews, additional funds are supplied, if necessary,

when sufficient justifications are given. In the derivation

of the restricted budget problem, we will optimize the

stocking levels given only the initial annual replenishment

budget.

5. Poisson Demand Distribution

The Poisson distribution is the most common

probability distribution used to represent demand for slow

movers. This distribution is attractive due to the
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exponential property of the time between demands, the fast way

the function approaches zero (low times between demands

account for most of the exponential distribution's density)

and the assumption of the independence of events.

6. Holding Costs

Holding costs are those expenditures related directly

to the item being stocked in the supply system. These costs

reflect several elements, such as:

- Warehousing (space, automated equipment, forklifts,
etc.).

- Administrative expenses (storekeepers, papers, computer
time, etc.).

- Cost of money (interest, inflation factors, opportunity
costs of not investing in other items).

- Losses due to theft, loss or misplacement.

Evaluating the holding costs of a unit has been, and

will continue to be, one of the most debated topics in any

ccst related inventory model. Warehousing and administrative

activities are hard to quantify and are therefore difficult to

convert into dollars. The most common method used to account

for these expenses is to assume a fraction of the unit

procurement cost as a reasonable measure of the holding costs.

The U.S. Navy uses 23% as the fraction for consumables items.

The I.N. has never addressed the question of the proper

fraction to use (given that the proper fraction might be

different due to different economic condition and different

warehousing expenses between the two countries). For the
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purposes of this thesis, the fraction will be treated as a

constant parameter and will not be addressed further.

7. Stockouts Costs

In cases where a demand has occurred and the shelf has

found to be empty, an order already placed can be expedited.

This procedure definitely produces additional expenses which

are tough to quantify. However, they do need to be reflected

by the models. It should be emphasized here that in the

current I.N. supply system there has been no attempt to assess

those kinds of costs and, as a consequences, they have not

been reflected in any models used up to this point. The only

expediting costs that can be reasonably easily quantified are

those associated with "spot buys" that the Navy makes for

small quantities of consumables which are bought locally in

markets in cities. Unfortunately, such buys are not typically

for slow moving, expensive spares.

Regardless of the difficulty associated with their

evaluation, any cost model we consider has to take such

backorder cost into consideration--not once, but twice.

First, in the replenishment budget (which has to absorb some

of this expense as a consequences of expediting) and secondly,

in the backorder component of the objective function. There

is a direct connection between the magnitude of any backorder

costs and the optimal cost decision. The higher these costs

are, the more likely that the minimum costs will be achieved

by stocking the item (and thereby eliminating the need for
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incurring such high costs).

B. STEADY STATE FORMULAS

In order to define what we call "costs" incurred during

the year, as well as the supply measure of effectiveness, we

first have to define three inventory steady state terms:

- Expected on-hand inventory at any instant of time, or
D(Q,R) .

- Expected number of backorders at any instant of time, or
B (Q, R) .

- Expected number of backorders during a year, or E(Q,R).

Reference 6 gives the exact formulas for each of these,

developed under the following assumptions:

- A Poisson process generates the demands over time and
each demand is for only one unit.

- Reordering is based on the value of the inventory
position (IP), which is defined as on-hand inventory +
on-order - backorders.

- Procurement lead time is constant and known in advance
for each of the items.

- R is the reorder point. When the inventory position
falls to R in value, an order in the amount of Q is
placed. Thus, the minimum value of IP is R and its
maximum value is (R+Q).

First, the general formulation of D(Q,R), B(Q,R), and

E(Q,R) will be presented, and then they will be reduced to the

special cases of R - 0 and Q - 0 or 1. We need to define the

following additional terms:

D - expected demand rate per year.

PCLT - procurement lead time of the item in years (known
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in advance).

J - an arbitrary integer representing the quantity of
inventory position above R.

X = the number of units on hand at any point of time.

p(Z) - the steady state probability that the inventory
position is Z at any time.

V,(X) - the steady state probability of having X units
on hand at any time.

V2(Y) - the steady state probability of having Y units
backordered any time.

P(W; D'PCLT) = The Poisson probability that W units will be
demanded during PCLT.

From the definition of J, the sum R+J represents some value

of the inventory position. Since J can range from 1 to Q, R+J

ranges in value from R+l to R+Q. The fact that J is never

zero is a consequence of the assumption of discrete (Poisson)

demand. When demand is discrete, an order is placed at the

instant that IP reaches R in value. When that happen, IP goes

immediately to R+Q. Thus, the amount of time that the IP has

to stay at value R is virtually zero.

To determine the expected on-hand inventory at time t, we

consider the inventory position at time (t - PCLT) and a

demand of (R+J-X) units during PCLT. Since all units on order

at time (t - PCLT) will have arrived by time t, the net

inventory (defined as on-hand - backorders) at time t will be

X and if X < R+J, then it will be positive and equivalent to

the on-hand inventory at time t. The probability of a net

inventory being X at time t and the inventory position being
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R+J at time (t - PCLT) is:

p (R+J) -p (R+J-X; D PCLT). (4.1)

Since J can range from 1 to Q, the probability that the

on-hand inventory is X at time t, regardless of the value of

IP at t - PCLT, can be determined from:

Q
1W (X) - E p (R+J) -p (R+J-X; D'PCLT) (4.2)

To determine p (R+J) we need to analyze the Poisson process

described by Figure 4.1.

r.4 -1 . .... r.

Figure 4.1 The Steady State Transition Diagram for
Inventory Position [Ref. 5].

In the time dt IP can move from a given state (R+J) to the

state (R+J-1) with a probability of I'dt (where X is the

expected demand rate and demand is Poisson distributed over

dt). An exception occurs when the given state is R+1. If

another demand occurs, the IP value goes to R and immediately

an order for Q is placed. This causes the value of IP to go

26



to R+Q.

Reference 6 has shown the balance equations which result

are:

A'p(R+J+l) - X-p(R+J) for J -, ... ,Q, (4.3)

and

-p(R+Q) = X-p(R+1). (4.4)

Since M (R+J) - 1, solving these Q equations results in

p(R+J) - 1/Q for J- I,...,Q; (4.5)

which means that the probability of being in each of the

possible IP states is the same and depends only on the reorder

quantity Q [Ref. 6].

Substitution of p(R+J) - 1/Q into (4.1) results in the

following formula for the probability distribution for on-hand

inventory:

Q
M - F p(R+J-X; D'PCLT) for 0 < X < R;

J=1
(4.6)

Q
S(X) - _ r  p(R+J-X; D"PCLT) for R+l < X < R+Q,

J =X-R
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and D(Q,R), the expected on-hand inventory at any time t, is

then:

R+QID(Q, R) Z x =0X WX) (4.7)
x=O

The same procedure can be used to derive V2 (Y), the probability

that Y units are backordered at any instant of time. In order

to backorder Y units at time t, we need a demand of (R+J+Y)

units between (t - PCLT) and t. If IP is (R+J) at time (t -

PCLT), the probability of this event is:

p(R+J)•p(R+J+Y; D-PCLT) (4.8)

Since J ranges from 1 to Q, the probability distribution

V2(y) of Y backorders at time t regardless of the value of IP

at time (t - PCLT) can be obtained from :

Q
W2 (Y) - , p(R+J) "p(R+J+Y; D'PCLT)

J=1

Q
= 1 p(R+J+Y; D'PCLT) for Y > 0. (4.9)

Q =1

We define P(out) as the steady state probability of being

out of stock (no inventory on hand) at any instant of time.

Then:
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P(out) = 2 'V(Y) (4.10)
y=O

The average number of backorders incurred per year,

E(Q,R), can be shown to be the product of the average annual

demand and P(out) (shown in [Ref. 6:equation 4.29], or:

E(Q,R) - D-P(out) . (4.11)

The expected number of backorders at any instant of time

B(Q,R), is defined as:

B(Q,R) - , Y'V2 (Y) (4.12)
Y=o

As noted in [Ref. 6], it is also the average unit years of

shortage incurred per year (we will call this time-weighted

units short per year in the next section).

Since we have to evaluate the holding costs, we need to

evaluate the average on-hand quantity at any instant of time,

D(Q,R). Equations (4.6) and (4.7) are difficult to use in the

general case. However, we can develop a formula for the on-

hand quantity using the relationship between the expected IP

and the expected on-hand inventory.

First:
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E(IP) W 1
E I1 F (R+J) P(R+J) - (R+ 1) + (R+2) + .. + (R+Q)

- Q+1 + R. (4.13)

Since we know that:

D(Q,R) - E(IP) - E(on-order quantity) + B(Q,R),

and, since the expected on-order quantity in the steady state

is equal to the expected demand during lead time [Ref. 6], the

above formula for D(Q,R) can be rewritten as:

D(Q,R) - _1 + R - D'PCLT + B(Q,R). (4.14)

C. MEASURES OF EFFECTIVENESS FORMULATION

Using the formulas just derived above, we can now write

the formulas for the following objective functions:

- Aggregate average mean supply response time (MSRT).

- Aggregate supply material availability (SMA).

- Average annual costs of holding and backordering.

1. Aaareaate Mean Supply Response Time

MSRT has a direct linkage with another MOE, called the

operational availability of a system. Reference 7 defines

operational availability as the probability that a system or
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equipment, when used under stated conditions in an actual

operational environment, will operate satisfactorily when

called upon. It is expressed as:

AO  MTBM (4.15)

- MTBM +--MDT (.5

where:

MTBM = Mean time between maintenances. This is
an engineering design characteristic or
parameter of the equipment.

MDT - Mean down time (mix of administrative and
engineering factors).

MDT includes the mean maintenance time (engineering

design factor) it takes to repair a system. From an adminis-

trative standpoint, MDT includes the delay caused when a spare

is not available on the shelf since additional time will be

required to obtain the part. That is,

MDT - mean active maintenance time + logistics

and administrative delay time (4.16)

Since we stated in the first assumption of the model

that we need a multi-item decision model, typically such a

model will be based on some aggregate measure of effective-

ness. We therefore want an approach for converting the mean
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supply response time achieved for each item into an aggre ci:e

measure of effectiveness. According to Reference 8, such an

Aggregate MSRT can be defined as:

n

E Di MSRT i

MSRTi n f or a = 1,2,...,n (4.17)
i=l

which is a demand-weighted avezage of the MSRT achieved for

each item (the higher the demand, the more weight is given its

MSRT in the aggregate picture). MSRT is directly related to

the time weighted units short (TWUS) . The time-weighted units

short (TWUS) is equivalent to B(Q,R) from the last section.

Its unit of measure is unit- years/year. TWUS takes into

account the number of units backordered as well as the time

they were in backordered status. Therefore, by dividing this

expression by the average annual demand rate of the item, we

obtain the mean time a demand for a unit will remain

backordered. We realize that this is the item's mean supply

response time MSRT. These relationships are summarized by the

following formulas:

TWUS B(Q.R)MSRT MSRT -(4.18)

Using TWUS is appropriate in cases where each day that

passes without the demanded item increases the damage due to
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factors such as loss of profit, loss of operational

availability, etc. The difficulty, as stated before, is to

attach a dollar figure to this loss.

2. Supply Material Availability (SMA)

Supply material availability measures the extent to

which the supply system can meet the demand for stocked items

(without the need of backordering them). In the previous

section we stated a formula for the expected number of

backc.eders per year, E(Q,R) for an item. We use it to

determine SMA as follows :

SMA = 100 x 1E(Q . (4.19)

We can maximize this MOE by minimizing the expected

number of backorders per year. As with the MSRT, we need an

aggregate SMA when we consider multiple-item models. The

aggregate expression for SMA is:

, E(Q, R)l
SMAagg= 100 x i=lJ1. (4.20)

D i

SMA is the current major MOE used by the U.S. Navy to

measure the wholesale inventory system's effectiveness.

3. Cost Formulations

We will consider two types of costs--average annual

holding costs and average annual backordering costs. As
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mentioned earlier, we assume that there is a need to supply

all demands during the year. Therefore, the unit acquisition

cost of the item will be of no interest for this analysis (the

total annual procurement costs are not changed by the decision

to stock or not to stock the item when we assume all demands

must be met). The ordering cost usually plays a role in the

decision concerning how much to buy when an order is placed.

If ordering costs are very large, order size will be also

large. However, since we are assuming a stocking policy where

we will either have Q - 0 or 1, there is no opportunity for

potential savings from order sizes.

a. Holding Costs

We consider the average annual holding costs as a

fraction of the unit purchase price (or cost) times the

average number of units on hand at any instant of time. Thus:

Average annual holding costs = h'C-D(Q,R) ; (4.21)

where:

C - the unit cost of the item.

h - the fraction of the unit cost which will be
used to reflect the time-weighted unit
holding costs.

D(Q,R) - the average expected units on hand at any
instant of time.
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b. Backorder Costs

These costs can be represented in three different

ways. The first is:

TWUSC..t W A'- B(Q,R) (4.22)

where:

A' = the time-weighted backorder cost for one
unit of the item.

The second is:

EBO.t = A'E(Q, R) , (4.23)

where:

A = the backorder cost for one unit of the
item (time does not play a roll here).

The third is a combination of (4.22) and (4.23);

namely,

Total Backorder Cost - A''B(Q,R) + A-E(Q,R). (4.24)

Equation (4.24) is applicable in many cases because it is

not uncommon to let A represent the expediting ordering cost

incurred and A' represent the time-weighted damage caused to

the organization because of the shortage.
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D. STEADY STATE FORMULAS FOR THE SPECIFIC STOCKING

POLICIES

The two alternative stocking policies we consider for

expensive insurance items have a reorder point of zero and

either a zero order quantity (Q - 0), or an order quantity of

one unit (Q = 1). For these alternatives the steady state

formulas from Section B reduce to the simple forms shown

below.

From (4.9), when J- 1 we get:

W2(Y) I p(Y+1; D-PCLT) . (4.25)

When J - 0, Equation (4.5) does not hold and in this

particular situation p(0) - 1.0 (since R+Q - 0 is the only

possible value for the IP). This results in:

j2 (Y)0 = p(Y; D'PCLT) (4.26)

From (4.10), (4.25) and (4.26):

P(out) 0 = Probability of being out of stock when we don't
stock the item

, V2(y)o = E 'p(y; D'PCLT) - 1 (4.27)
y=0 y=0
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00 0

P (out) 1  FV2 (Y) 1 = E P(y+l ; DPCLT) = 1- p(0) (4.28)y.= y=o

where p(0) - e-D' T for the Poisson distribution.

From (4.12), (4.25) and (4.26):

00 00
B(0,0) - E yV(y))- E y'p(y; D'PCLT) = D PCLT (4.29)

y=O y=O

00

B(0,1) = E yV2(y)i I = y-p(y+l ; D. PCLT)
y=O =

= p(2) + 2p(3) + 3p(4 ) +

- p(1) + 2p(2) + 3p(3) + 4p(4) +

- [p(1) + p(2) + p(3) + p(4) + .

- y'p(y;D'PCLT) - 1-p(O)]
y=O

= DPCLT - [1-p(0)] (4.30)

From (4.11), (4.27) and (4.28) :

E(0,0) = D'P(out)0 = D1 = D ; (4.31)

E(0,1) - D'P(out)1 - D" [1-p(0)] (4.32)
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D(0,0) - 0, since no inventory is being held, (4.33)

And from (4.14), (4.30) and (4.32):

D(0,1) - + R - D'PCLT + B(0,1)

- 1 + 0 - D PCLT + {D-PCLT - [1-p(0)]}

= p(0). (4.34)

E. BEHAVIOR OF COSTS/SUPPLY MOES

Using the formulas from the previous section we can state

the reduced forms of the different costs and supply

performance measures (MOE) for the two proposed stocking

policies. We will also examine their behavior as annual

demand or demand during lead time varies.

1. Annual Expected Holding Costs

Average annual holding costs (0,0) - 0 (4.35)

Average annual holding costs (0,1) - h'C'D(0,1)

- h-C" • e' (4.36)

Figure 4.2 illustrates the differences in the average

number of units on hand, and therefore the annual expected
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holding costs as a function of D when h"C - 1.

a 4F 1 UNIT hLY

NO IVENUIuJr

I....

Figure 4.2 Average On-Hand Inventory as a Function of
D (PCLT - 2).

2. Annual Expected Backorder Costs

EBO.., (0, 0) - - A-.E(0,0) - A-.D ;(4.37)

EBOoot t(0, 1) - A- E(0, 1) - A*D [l-p (0)] (4.38)

Figure 4.3 illustrates the differences in the expected

number of backorders incurred annually between the two

stocking policies as a function of D. This graph also

represents the differences in costs between the two stocking

policies when A - 1.
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Figure 4.3 Average Annual Expected Backorders as
a Function of D (PCLT-2) .

3. Expected Annual Time Weighted Units Short Costs

TWUS60s t (0, 0) - A'- B(0, 0) - A'-.D'PCLT ;(4.39)

TWUS"Ot (0, 1) - A *"B(0, 1)

- A" [DPCLT - 1 + p(0}]. (4.40)

Figure 4.4 illustrates the differences in the annual

expected TWUS between the policies as a function of D

(PCLT - 2).
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Figure 4.4 Average Annual TWUS as a Function of D
(PCLT -2).

The figure also reflects the differences in the TWUS

costs for A' - 1.

4. Mean Supply Response Time

From previous derivations we have seen that

MSRT(OO) B(0,0) DxPCLT = PCLT ; (4.41)

hISRT(,i) =B(0,1) D-PCLT- [l-p(O)J (4.42)

In order to graph the differences between the two

formulas, we first have determine the limits of MSRT(0,1) and

MRST(0,0) as D approaches zero.

MSRT(O,1) = lim D.PCLT - D . eDPCLT I-ePn DPCLT

0 D- O D

PCLT - PCLT = 0

Also,
irn MSRT(o,o) = 0
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This special result is true because if there is no demand

we do not have any problem satisfying it instantly, even if

we do not have an item on hand. In the plot of MSRT(O,O),

when the demand rate is above 0, MSRT will be equal to PCLT.

MSRT(0,1) will start at zero when no demand is present, and

will increase as the demand rate increases (as shown by Figure

4.5).

- UNIT

Figure 4.5 MRST as a Function of D (PCLT =2).
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V. COST/PERFORMANCE STOCKING MODELS

Two types of models are derived in this chapter. The

first one is unconstrained. The second type includes a budget

constraint.

The unconstrained models are only concerned with

minimizing average annual costs. Models which incorporate a

budget constraint are concerned with minimizing average annual

costs and optimizing supply MOEs as well. This chapter will

also discuss the optimal solution procedure for all model

types.

A. UNCONSTRAINED MODELS

The unconstrained models for deciding whether or not to

stock an item are based on an economic analysis of the

options. Clearly, the average annual costs incurred during a

year are influenced by the stocking decision.

The general form of such models is:

Find Q., i - 1, 2, ..., n which minimize

n
ncost (Q) ; (5.1)

1=1
where:

- the inventory order quantity of item i,

n - the number of items we are considering,

costi (Q,) - the total average annual costs incurred when
Qi is stocked for item i.

43



While we are mainly interested in a model which deals with

several spares (of a specific weapon system or mix of items),

it should be obvious that the models can also be used to

evaluate the desirability of stocking individual items.

The sum of annual average costs for all items, as

presented by (5.1), can be minimized by minimizing each one of

the individual costs since, as we will see shortly, the cost

terms contain no cross-products (i.e, Qj.Q). This property,

known as separability, allows us to write (5.1) as:

min cost(Q) - rm cos,() . (5.2)i= i=l

We will therefore concentrate on minimizing costi(Q,), and

seek the optimum decision for the cost function. 'Since Qi can

take on only values of 0 and 1, we can reduce our problem to

three marginal cases where we will compare the costs when

Q, - 0 with the costs when Q. - 1. We will also suppress the

subscript i for the rest of the presentation of the

unconstrained models. The three cases reduce to:

(a) cost(0) - cost(1) < 0 ,

(b) cost(0) - cost(l) = 0 , (5.3)

(C) cost(0) - cost(1) > 0 .

In the first case, the "no holding" (or Q - 0) policy is

cheaper than the stocking policy (or Q - 1), and therefore
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Q - 0 is optimal (i.e., all demands will be backordered for

the item). In the second case, there is no difference between

the costs of the two alternatives, so both Q = 0 and Q = 1 are

optimal. We will be able to draw the corresponding

indifference curve later. In the third case, it is cheaper to

stock the item (Q - 1) than not (Q = 0).

Three specific cost models will be examined next. The

first considers backorders, but does not consider the length

of time any demands remain unfilled. The second considers

time-weighted backorders and the third considers both of the

above.

1. Expected Backorder Costs Case (EBO)

If we are not concerned with the dimension of time, we

reflect the backorder costs by the expected number of

backorders per year. In this case the formulas derived in

Chapter IV give:

(a) cost(0) - backordering cost - A'D

(5.4)

(b) cost(i) - holding + backordering costs

- C'h-p(0) + A-D" [1-p(0)]

Setting (5.4a) equal to (5.4b) and solving for D, we get:
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A'D - C'h'p(0) + A'D" (l-p(0)] ,

which reduces to

(C-h - A'D]-p(0) - 0

Since p(O) > 0, cost (1) equals cost (0) only if

C-h - A'D

This can be rewritten as :

D-Ch
A- (5.5)

Thus, this value of D is the breakeven point between

the costs of the first and the third policies from (5.3). In

other words, when the rate of annual demand equals the

critical value shown in (5.5), we do not differentiate between

the two policies. They are equally attractive.

Considering (5.5) with (5.3) allows us immediately to

state the optimal decision for the complete spectrum of the

demand rate. It is shown in Table 5.1.
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TABLE 5.1

OPTIMAL STOCKING DECISIONS FOR ALL POSSIBLE DEMAND RATES
FOR THE EBO MODEL

iCase Demand Optimal
Rate Decision Reason

Ch
a D < hDon't stock. Backordering is cheaper

(Q = 0) than holding the unit.
Chb D - Either policy The two expected costs

is optimal. are equal.

c D > Ch stock. Holding one unit isA (Q = 1) cheaper.

Figure 5.1 illustrates the optimal decision rule for a

range of A, D and two different unit costs values. The value

of h for this illustration is 0.23.

-N

0a C

' s 3.0 4.0 4.5 .0

Figure 5.1. Optimal stocking Policy for Different
Values of A, D and C f or the EBO Model.
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As is expected, as the unit price increases, the

optimal decision would change toward not holding the unit.

For a fixed unit cost and demand rate, as the backorder cost

A increases, stocking one unit becomes more desirable.

2. Expected Time-Weichted Units Short (TWUS) Cost Model

In this case, the backorder costs include the effect

of time that they remained unfilled. From Chapter IV, the

objective function was:

(a) cost(O) - A''D'PCLT,

(5.6)

(b) cost(l) - C-h'p(O) + A' [D'PCLT-l+p(0)].

The same cases from (5.3) apply here also. Case (b) gives

Q - 0 or Q - 1 as optimal stocking decision. When this

happens:

A "DPCLT = C'h'p(0) + A'" [DPCLT-I+p(0)]

This reduces to

p(O) [h'C+A'] - A' - 0

or
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e-D. FCrLT - At

Ch + A'

Taking the natural logarithm of both sides gives

D"PCLT - -in [Ch- A'] (57)

Again, this value of D. PCLT is the breakeven point when the

expected costs of the two policies (Q - 0 and Q - 1) are

equal. The optimal decision in this case is represented for

all possible values of D'PCLT by Table 5.2.

TABLE 5.2

OPTIMAL STOCKING DECISIONS FOR ALL POSSIBLE (D-PCLT) VALUES
FOR THE TWUS MODEL

Case Demand Optimal
Rate ,Dcision Reason

a D'PCLT < -in FA'1 Don't stock. Backordering isLCh+ A'J (Q = 0) cheaper.

b DPCLT - -in FA ' Either Both costs are
Eh +At] policy is equal.

optimal.

c DPCLT > -ln[A Stock. Holding one
(Q- ) unit is

cheaper.

Figure 5.2 illustrates the decision rules for

different values of A', D and PCLT for two different unit cost

values. Again, h is 0.23 in this illustration.
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Figre 5.2. Optimal Stocking 
Policy for

Differnt Values 
of A, D, PCLT

and C for the TWUS 
Model.

Even though the basic behavior is similar in the two cases,

there is a definite 
difference in the 

way the models behave 
as

a function of shortage cost, D and PCLT. if the backorder

cost is time-dependent, 
then the decision 

not to stock occurs

sooner than when 
time is not part 

of the backorder 
cost.

3. EBO and TWUS Model

If we want to consider 
both the fixed cost 

of having

a backorder (represented by A) and the time-depenent

component of that cost (represented by 
A'), we have to

consider the following 
cost formulation:
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a) cost(0)- A'D'PCLT + A-D - D" (A'PCLT + A)
(5.8)

b) cost(l)- C'h'p(O) + A' [D'PCLT -1 + p(O)]

+ AD" [l-p(O)]

Setting (5.8a) equal to (5.8b) will give us:

C'h'p(0) - A' + A''p(0) - A'D'p(0) - 0,

or

D - p(0) [Ch + A'] - A' (5.9)
A.p(O)

where p(0) = e -D'PcT for the Poisson demand case.

Table 5.3 gives the optimal decisions in this case as

a function of D.
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TABLE 5.3

OPTIMAL STOCKING DECISIONS FOR ALL POSSIBLE D VALUES.
FOR THE EBO + TWUS MODEL .....

Case Demand Optimal
Rate Decision Reason

a D < p(O) [Ch + A] Don't stock Backordering

AV (O) (Q - 0). is
cheaper.

b D - p(0) [Ch + A]-A' Either Both costs
A-p(O) policy is are equal.

optimal.

c D > p(O) [Ch + A]-A' Stock. Holding one

A.p(O) (Q - 1) unit is
cheaper.

Figure 5.3 illustrates the decision rules for

different values of D and C, for two different sets of

backorder costs (A and A'). PCLT for this illustration is set

to two years and h is again 0.23.

Figure 5.3. optimal Stocking Policy for Different Values
of D, C, A and A' in the EBO+TWUS
Model
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The three optimal policy guides, given in Tables 5.1,

5.2 and 5.3, are very powerful and easy to use. Reference 9

provides an example of the advantages provided by Table 5.1.

It is a case study done on a sample of slow movers examined at

one of the largest shipyards in the world in Lisbon

("Marqueira"). The case study compared the average annual

costs of two policies:

- Previous policy--stocking one or more units for each slow
mover considered to be an important spare to the
shipyard.

- Recommended stock quantity given by the EBO model
presented above.

Each item in the sample had a value for A which was

composed of the relative importance of the spare to the

machine it belonged to and the relative importance of the

machine to the activity of the shipyard (A ranged from $1200

to $7000). Each item in the sample cost more than $400 and h

was selected to be 0.3. PCLT was assumed to be six months for

all items.

For the random sample chosen, it was shown that by

applying the economic model, approximately 50% of average

annual costs could be saved during the year (both holding and

backorder costs). While the previous stocking rule had an

average annual cost of $22,300 the economic stocking model had

average costs of only $11,000.1

'The interested reader is referred to Reference 9 to get
more details on the analysis and parameters used in this
study.
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B. THE CONSTRAINT PROBLEM

In many cases, both the holding/backordering costs

projected during the year, as well as the initial

replenishment budget affect the decision whether or not to

stock an expensive spare. A limited replenishment budget

might changt. the character of the final solution by forcing

less procurement then would have been done without the

constraint. This section provides five different models that

consider both the average annual costs and supply MOEs when

there is a budget constraint.

1. Constrained Costs Problem

a. Framework for the Constrained Costs Problem

In the case of the constrained problem, we are

concerned with finding Q, , i - 1,2 .... n, which

minimize 2 cost, (Q,)i=1
(5.10)

subject to C*" Q B,

where B - Annual initial replenishment budget.

The constrained problem in (5.10), when the constraint

is binding, can be viewed as an unconstrained one by

considering the Lagrangian for the problem The following

Lagrangian results:
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n
L cost(Q) + X. C 1- 01 - B J (5.11)i~li=1

where k is the Lagrange multiplier.

This function is separable and therefore we need only

to take a look at the part of the function which involves item

i. As Reference 3 indicates, in this type of problem, the

same ) and Qi (i = 1,2 ..... ,n) will minimize the reduced

Lagrange function:

Li(Q) - costi(Q) + X'Ci. Qi. (5.12)

Following the approach for the unconstrained problem,

we have three possible cases:

(a) if Li(1) - Li(0) < 0, then Qi - 1 is the optimal
solution,

(b) If Li(1) - L1 (0) - 0, both Qi = 1 and Q. - 0 (5.13)
are optimal,

(c) If L1 (1) - L1 (0) > 0, then Qi-O is the optimal solution.

From (5.12) we get that:

L4 (0) - costi(0) ; and

Li(1) - costi(1) + X-Ci
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Substituting into the first case of (5.13) yields:

costi(1) + 'C, - costi(0) < 0

or:

< costi(O) - costi(1) (5.14)
C.

For the third case we get:

costi(O) - costi(1) (5.15)
Ci

The second case gives equality for both (5.14) and (5.15).

Combining these results, we get:

_ _ all items~ r all items 4
ott,(o)- cost,(1) for which otj()- coatiM for whichIL, Q-0 is8 < x < cQ-1 is

optimal optimal (5.16)

To determine the value of X satisfying (5.16) for all items,

we first have to calculate the marginal cost ratio, MCR., for

each item i, where:

cost(O) - cost1 (1)
MCR = Ci , for i - 1,2, .... n (5.17)
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and rank those with positive values from the largest to

smallest. We first buy one unit (i.e., Q, - 1) for the item

with the largest MCR, then we buy one unit for the next

largest MCR item, and so on until the budget is used up or no

more units can be bought with the remaining budget. The value

of optimal X is the smallest positive MCR for which Q - 1 was

feasible. Actually, for the problem in this section, we are

not interested in the value of X, but rather in the procedure

for determining the items for which Q0 - 1 and Q1 - 0. The

ranking procedure just described provides that procedure.

If the Qi were not required to be integer and if the

objective function of (5.10) was a continuous function of the

Q,'s, then X would give us the shadow price associated with the

annual cost reduction provided when the budget (B) increases

by one dollar. Unfortunately, in our discrete problem, it

does not correspond to such a shadow price, unless:

nX C,'Q - B.
i=1

at optimality. Exact equality is not expected when the value

of B is specified before the budget allocation takes place.

Up to this point we have assumed the budget constraint

is binding. However, in general we may not know if that will

be true. Only after we follow the procedure described above,

we might know exactly if the constraint is binding or not.

What does it mean if we buy Qi - 1 for all positive MCRi and
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still have not used up the budget? It means that the problem

is an unconstrained one because X - 0 will satisfy (5.11). It

should be obvious that we would never buy Q - 1 for any item

having a negative MCR, because the numerator of the ratio

causes the ratio to be negative; that is:

cost1 (0) < cost1 (1),

and therefore buying nothing gives a lower value of the

objective function (annual holding and backordering costs)

than buying Q1 - 1 for such items.

Table 5.4 summarizes the results of this section. The

results of this section apply to the three costs constrained

models discussed in the following sections of this chapter.
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TABLE 5.4
BASIC RECOMMENDED STOCKING POLICY FOR

THE CONSTRAINED PROBLEM

Case Value of Recommended
Condition MCR, Policy

a L,(1) - L,(0) < 0 Positive * Stock the item
using the
ranking
procedure.

b L;(1) - L,(0) - 0 Zero * Both policies
are optimal.

c Lt(1) - L,(0) > 0 Negative Do not stock
the item.

* If there is sufficient budget to do so.

b. EBO Model

When the expected number of backorders per year is

used as the backorder term in the average annual costs, (5.4)

expresses the cost for each of the stocking policies.

Replacing them in (5.17), and suppressing the subscript i,

gives:

MCRU3  D.A - p(O)-h-C - A. D[i p(o)]

which reduces to:

-D'PCLT(A-D - h-C
MCRU (.-hc (5.18)

According to Table 5.4, if this ratio is positive,

we will consider the item for stocking based on the ranking
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procedure and the size of our budget. If this ratio is

negative, we definitely will not stock it. If the ratio is

zero, either stocking (Q - I)or backordering the item (Q± - 0)

are optimal. Figure 5.4 illustrates the behavior of this

ratio as a function of D and the backorder cost parameter A

(PCLT was assumed to be two years for the make of the

illustration).

4

~e. *.S a.O u.s a..; a$ s .0 1.$ 4.0 4.5 5.0

OEM A ND

Figure 5.4. MCR3 0 as a Function of D for Different
Values of A (C -*5000, PCLT - 2 and
h - 0.23).

Figure 5.4 shows that the ratio reaches its maximum value

when:
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D = PCLT-h-C+ A
A-PCLT

This formula was derived by taking the partial derivative with

respect to D and setting it equal to 0. As A gets larger and

larger, the maximum value of MCR is reached when D = l/PCLT,

because:

lim PCLT-h-C+A = 1
A-oo A-PCLT

Figure 5.4 also illustrates the following

characteristics of MCR.o:

- As demand increases,the desirability of holding the item
increases. This is true until D is set equal to 1/PCLT
(when maximum ratio value is achieved).

- When D > 1/PCLT, MCRUO decreases and reaches an
asymptotic limit of zero (as demand increases to
infinity).

- As backorder costs increase, the desirability of stocking

the item also increases.

c. TWUS Model

When the backorders costs include the time a

backorder remains unfilled, the average annual costs have TWUS

in the backorder term. Formula (5.6) presented the costs

incurred for each of our two policies. Substituting them into

the general MCR equation (5.17) yields:

MCRP.S = A'.D.PCLT - h-C-p(O) - A' [D.PCLT - 1 + p(O)]
C

which reduces to:
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MCRPWN - (5.19)

Figure 5.5 illustrates the behavior of this ratio

as a function of D and several values of the backorder cost

parameter A'

0. .0I .5 L I 2.5 .0 3.5 4.0 4.r 1.0

UEMAND

Figure 5.5. MCR.,J s as a Function of Demand for Different
Values of A' (PCLT - 2, C = $5000 and
h = 0.23).

Figure 5.5 illustrates the following characteristics of

MCR1, :

- As demand during PCLT increases, the desirability of
holding the item increases but at a decreasing rate.

- As The time-weighted backorder cost increased, the
desirability of stocking the item also increases.

- The asymptotic limit of the ratio is (A'/C). No further
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savings can be achieved in the backorder costs, when one
unit is stocked. The holding cost reaches zero in the
limit under the Q - 1 stocking policy. The net result is
that when D become very large, the difference in the
total annual costs of the two policies reaches a constant
value.

d. EBO and TWUS Model

As mentioned earlier, there are situations in

which we would like to assess both a penalty for each

backordered unit and a time weighted penalty (the penalty per

unit might represent the extra expediting costs required). It

is then proper to use both the backordering cost parameters of

the items. The expected annual costs when both backorder

costs are included were presented in (5.8).

Replacing (5.8) in (5.17) yields the next MCR.

MCRaO TwJs - e "D' PCLT(A-D - A' h-C) + A' (5.21)C

Figure 5.6 illustrates the behavior of this ratio

as a function of D (assuming PCLT is constant) for several

values of the backorder cost parameters A and A.
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.A=5000 A =3000

DEMAND

Figure 5.6. MCRQ =0 s as a Function of Demand for
Different Combinations of Values for A and
A' (PCLT = 2, C = $5000 and h = 0.23).

It is easy to notice that this MCR combines the

attributes of the previous two versions discussed earlier.

After reaching a maximum value (the same value of D as shown

in figure 5.4), the marginal ratio decreases and remains at a

fixed level no matter how much demand increases.

2. Supply MOE Models

a. Framework for the Constrained supply MOE Problem

We now develop models having supply MOEs as their

objective functions. Here we solve the following problem:

Find Q1, i - 1, 2, .•. ,n which
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n

maximize .= MOE 1(Qi)
or

minimize

n
subject to: C±' Qj < B.

The objective function is also separable in this

case so we can concentrate on optimizing each item's MOE

separately. The Lagrangian can again be formed with MOEi(Qi)

in place of cost,(Q,) in Equation (5.11).

Only one possible case exists now. This is

because of the monotone property of each MOE (each decision to

stock an item will improve the objective function for the

MOE's we are considering, in contrast to the cost objective

function). So we only consider cases where:

Li(1) - Li(0) < 0,

For this case, Qi = 1 is the optimal solution.

In the same manner as above, we also obtain the

Marginal Ratio, which we now call the Marginal Performance

Ratio (MPR).

MPR = MOE(O) - MOE(1) (5.22)
C
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Since the MPR will be positive for all items, they

are all candidates for stockage. The ranking procedure is

again used, because the higher the positive MPR is, the more

desirable it is to stock the item (just as in the cost

models). We start spending the budget on the item having the

largest MPR, than we buy one unit of the item having the next

largest MPR, and so on. If we can we try to buy Q. - 1 for all

i. If B is large enough to allow that, then the problem is

unconstrained.

b. SMA Model

From (4.37) and (4.38), we showed that:

EBO(O) = D

and

EBO(1) = D" [1 - p(0)]

The desired objective function is to maximize SMA. However,

since maximizing SMA means minimizing the expected annual

number of stockouts, we can write MPR in terms of EBO.

M EBO(O)- EBO(1) _ D-D[1 - p(o) -D.- PCLTMAC C (5.23)
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Figure 5.7 illustrates the behavior of the ratio

as a function of D when PCLT = 2 for several values of the

unit costs (C).

41,

9.0 04 9.0 1.3 3.

Figure 5.7 MPR,. as a Function of D (PCLT - 2)
and the Unit Price.

This ratio reaches its maximum value when D equals

the reciprocal 2of PCLT (D'PCLT = 1). After this point, it

declines to zero. With a high rate of demand, there is a

decreasing benefit in stocking only one unit of the item.

That is why the ratio decreases to zero.
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C. MSRT Model

As shown in Equations (4.41) and (4.42),

MSRT(0) - PCLT ;

MSRT (1) = D-PCLT- [1 - p(0)J
D

When we use MSRT(0) and MSRT(1) to replace MOE(O) and MOE(1)

in Equation (5.22), we get:

. - e "D PCLT (5.24)
D-C -

Figure 5.8 illustrates the behavior of this ratio as a

function of D (PCLT = 2) for several values of unit costs (C).

Figure 5.8. MPRvmT as Function of D (PCLT - 2)
and C.
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The figure shows that the ratio approaches the

finite limit of (1/D'C) because no further improvements can be

achieved by deciding to stock only one unit of the item.

C. SOLUTION PROCEDURE

This section summarizes the procedures needed to obtain an

optimum selection of items for stocking. Figure 5.9 gives a

comprehensive flow diagram to use in conducting the analysis.

As we mentioned earlier, in the supply MOE's unconstrained

case, we don't need to rank the items. We can buy all of them

since for each one of them MOEi(1) > MOEi(0) and the objective

function is improved by stocking them.

In the supply MOE's constrained problem, the ranking

procedure must be used, since the higher the MPR is, the more

desirable it is to stock the item. We start spending the

budget on the item having the largest MPR and we buy one unit

of it. If we can we then buy the item with the next largest

MPR, and so on. We continue until we are left with no more

budget to buy the next candidate for stocking.

In the budget constrained problem, a global optimum may

be different from the local constrained solution we get from

the ratios and the ranking procedure. We have found examples

when the two solutions are different.

If we can not stock all items having a positive MCR, it

indicates that the solution is a constrained one because if

the constraint were relaxed, we could stock all these items
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and lower the total annual average costs.

In the constrained case, the ranking procedure based on

the marginal ratios recommends stocking items with the highest

ratios. We need to emphasize that if the next selected item's

unit cost exceeds the remaining annual budget, we do not stop,

but continue to try to stock the next highest ranked item,

even if it is less desirable. This is done until we consume

the entire budget or, in the case of cost minimization, no

more items with a positive MCR remain.
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VI. ILLUSTRATION OF THE MODEL

In Chapter V, different models were presented for solving

the stocking problem of slow-moving items. These models

support different objectives and can consider a budget

constraint. This chapter uses a hypothetical numerical

example to illustrate the way the models work. The example is

designed to stress the differences in solutions provided by

these models. It will also show one example of the benefits

of sensitivity analysis. Such analysis can provide

indications of how a solution is affected by model parameter

changes.

A. THE EXAMPLE DATA SET

Let us assume that we have a situation where we need to

consider annual replenishment for a kit of six expensive,

slow-moving items. Assume also that after allocating a budget

for the regular (medium to high demand rate) items, we are

left with some residual budget for buying the "insurance"

items. We need to remember that, according to our assumption,

this budget is not a final one, but the first allocation as

the new fiscal year begins. If demand during the year

requires new funds, we assume they will be supplied. Thus, we

are concerned with optimizing our first dollar allocation

under different objective functions.
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The relevant parameters values for the six items are

provided in Table 6.1. The holding cost parameter h is

assumed to have a value of 0.23.

TABLE 6.1

EXAMPLE PARAMETER SET

Item Item Item Item Item Item
Parameter Notation A B C D E F

Forecasted demand D 1 1 0.5 1.5 0.2 0.5
per year

Procurement lead PCLT 2 2 1.5 2 2.5 0.2
time (years)

Unit price C $8K 25K 2K 10K 15K 10K

Backorder cost A' $4K 0.5K 2K 2K 10K 8K
per unit per year

Backorder cost A $2K 0.2K 3K 4K 4K 3K
per unit

Three budget condition will be considered:

- No budget limit (unconstrained case).

- Provisioning budget limited to $15,000.

- Provisioning budget limited to $25,000.

It turns out that the unconstrained annual expected costs

problem can be solved by meeting the conditions derived in

Section A of Chapter 5 or by computing the Marginal Ratios

presented in Section B of Chapter 5. A positive Marginal

Ratio value is equivalent to meeting the condition for

stocking in the unlimited budget case. This is explained by
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the fact that a positive Marginal Ratio means that

cost.(1) < cost1 (0) (less costly to stock) which is exactly

what the conditions for case C in Tables 5.1, 5.2 and 5.3

mean. We take advantage of this fact and just use the

Marginal Ratio to determine the solution to the model for the

three budget conditions given above.

B. COST OPTIMIZATION

1. EBO Model

Table 6.2 shows the analysis and solution guidelines

for this case.

TABLE 6.2

ANALYSIS FOR COST MINIMIZATION WHEN EBO IS USED

Demand Unit cost(O) cost() Ranking
During Price for

Item PCLT - $L J$} ($ MCR Stocking

A 2 8,000 2,000 1,978 0.003 3

B 2 25,000 200 951 -0.03 -

C 0.75 2,000 1,500 1,009 0.245 1

D 3 10,000 6,000 5,816 0.018 2

E 0.5 15,000 800 2,407 -0.107 -

F 0.1 10,000 1500 2,223 -0.07 -

The unconstrained solution is to stock A, C and D

which yields an optimal annual average cost of $11,303. This
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solution costs $20,000 to procure and is also optimal even

when the budget limitation is set to $25,000. If only $15,000

budget is available, the solution is to stock items C and D

and the average annual cost will increase to $11,325.

2. TWUS Model

Table 6.3 represents the analysis and solution

guidelines for this case.

TABLE 6.3

ANALYSIS FOR COST MINIMIZATION WHEN TWUS IS USED

Demand Unit cost (0) cost (1) Ranking
During Price for

Item PCLT ($) ($) ($) MCR Stocking

A 2 8,000 8,000 4,790 0.40 2

B 2 25,000 1,000 1,346 -0.01 -

C 0.75 2,000 1,500 662 0.42 1

D 3 10,000 6,000 4,214 0.18 3

E 0.5 15,000 5,000 3,158 0.13 4

F 0.1 10,000 800 2,120 -0.13 -

The unconstrained solution stocks items A, C, D, E and

incurs an optimal average annual costs of $14,600 and total

procurement costs of $35,000. If the budget available is only

$25,000, the solution is to stock only A, C and D. The optimal

average annual costs in this case will increase to $16,500.

If a budget of only $15,000 is available, the solution will be

to stock only items A and C. The average annual costs will
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then increase to $18,200.

3. TWUS and EBO Combined Model

Table 6.4 shows the analysis and solution guidelines

for this case.

TABLE 6.4

ANALYSIS FOR COST MINIMIZATION WHEN
BOTH TWUS AND EBO ARE USED

Demand Unit cost(0) cost(l) Ranking
During Price for

Item PCLT ($) ($)- ($) MCR Stockina

A 2 8,000 10,000 6,520 0.43 2

B 2 25,000 1,200 1,518 -0.012 -

C 0.75 2,000 3,000 1,453 0.77 1

D 3 10,000 12,000 9,915 0.21 3

E 0.5 15,000 5,800 3,473 0.15 4

F 0.1 10,000 2,300 2,263 0.003 5

The unconstrained optimal solution is to stock items

A, C, D and E which costs $45,000. This result gives a

minimum average annual cost of $24,800. When we limit the

budget to $25,000, the average annual costs increase to

$27,200 since we will stock only items A, C and D. When the

budget is reduced to $15,000, we stock only items A and C and

the average annual costs will increase to $29,300.
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C. SUPPLY MOES

1. SMA Model

Table 6.5 shows the analysis and solution guidelines

for this case. It should be remembered that maximizing SMA is

equivalent to minimizing the expected number of backorders per

year.

TABLE 6.5

ANALYSIS FOR MAXIMIZING SMA (MINIMIZING EBO)

Demand Unit Ranking
During Cost EBO(0) EBO(1) for

Item PCLT Mj units units MPR* Stocking

A 2 8,000 1 0.86 0.017 3

B 2 25,000 1 0.86 0.005 6

C 0.75 2,000 0.5 0.26 0.12 1

D 3 10,000 1.5 1.42 0.008 4

E 0.5 15,000 0.2 0.08 0.008 5

F 0.1 10,000 0.5 0.04 0.045 2

*The MPR is computed with unit costs divided by one
thousand.

The unrestricted optimal solution is to stock all

items and achieves an SMA of 25% (a budget of $70,000 is

needed). When just $25,000 is available, the solution is to

buy items A, C and F. In this case, SMA drops to 18%. When

the initial annual provisioning budget is set to $15,000, the
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solution is to buy items C and F. In this case, SMA drops

further to 15%.

2. MSRT Model

Table 6.6 shows the analysis and solution guideline

for this case.

TABLE 6.6

ANALYSIS FOR MSRT MINIMIZATION

Demand Unit Ranking
During Cost MSRT(0) MSRT(1) for

Item PCLT ($) years years MPR* Stocking

A 2 8,000 2 1.14 0.108 3

B 2 25,000 2 1.14 0.03 5

C 0.75 2,000 1.5 0.44 0.53 1

D 3 10,000 2 1.37 0.06 4

E 0.5 15,000 2.5 0.53 0.13 2

F 0.1 10,000 0.2 0.01 0.02 6

*The MPR is computed with unit costs divided by one

thousand.

As expected, in the unconstrained problem we will

stock all items and will used an initial budget of $70,000.

The aggregate MSRT which results is 0.99 years (computed from

Equation 4.6). When we limit the initial budget to $25,000,

we will stock only items A, C, and E. This solution will

achieve an aggregate MSRT of 1.39 years. With a budget of
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only $15,000, the solution direct us to stock items A and C

and the aggregate MSRT will increase to 1.48 years.

D. SUMMARY OF EXAMPLE OPTIMAL SOLUTION

Table 6.7 summarizes the optimal solutions for the

examples under the various models and budget constraints

presented in Section A through C.

TABLE 6.7

SUMMARY OF OPTIMAL SOLUTIONS FOR ALL CASES

No budQet constraint
Model Type Items Initial $25,000 $15,000

and Procurement Budget Budget
Perf. Budoet Limit Limit

items A,C,D A,C,D C,D
EBO perf. $11,300 $20,000 $11,300 $11,325

items A,C,D,E A,C,D A,CTWUS perf. $14,600 $35,000 $16,500 $18,200

TWUS items A,C,D,E A,C,D A,C
H +EBO perf. $24,800 $45,000 $27,200 $29,300

Z Agg. items A,B,C,D,E,F A,C,F C,F
SMA perf. 25% $70,000 18% 15%

. Agg. items A,B,C,D,E,F A,C,E A,C
MSRT perf. 0.99 years $70,000 1.39 1.48

E. PARAMETRIC ANALYSIS OF BUDGET CONSTRAINT

The final step will be to conduct a parametric analysis to

study how varying the level of the initial provisioning budget

affects the optimal values of the various objective functions.

This analysis provides valuable insights for the decision

maker. For example, such an analysis can show us where we
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could increase the initial provisioning budget by only a small

amount and improve our objective function substantially.

1. Cost Models

Figures 6.1 and 6.2 show the optimal expected annual

costs as a function of different initial annual provisioning

budgets for the first two backorder cost alternatives.
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Figure 6.1. Optimal Solution to Annual Expected
Costs When EBO is Used.
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In the first case, when EBO costs are used, just items

A, C and D will be stocked in the unconstrained case (Table

6.7). This requires only $20,000. Beyond that point,

stocking other items is not economical. In the second case,

the unconstrained minimum annual costs are reached when items

A, C, D and E are stocked at a cost of $35,000 (Table 6.7).

Beyond that, no additional items should be stocked because

they would cost more to stock than to backorder them.

2. Supply Models

a. SMA Model

Figures 6.3 and 6.4 show what happens to the

aggregate SMA when it is the objective function and to the

MSRT at different levels of an initial provisioning budget.

The MSRT is shown only as additional information.

225

I..'

Figure 6.3. Aggregate SMA as a Function of the
Budget Constraint for the SMA
Model.
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Figure 6.4 Aggregate MSRT as a Function of the
Budget Constraint for the SMA Model.

b. MSRT Model

Figures 6.5 and 6.6 show what happens to the

aggregate average MSRT objective function and SMA at different

levels of the initial provisioning budget. The SMA is shown

just as additional information.
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Figure 6.5 Aggregate MSRT as a Function of the
Budget Constraint for the MSRT
Model.
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Figure 6.6 Aggregate SMA as a Function of the
Budget Constraint for the MSRT Model.

Figures 6.3 to 6.6 show us that, in both models,

both the SMA and MSRT improve when the budget constraint is

relaxed. There are still differences between the two models,

especially in the high range of the provisioning budget

constraint. In the example considered, these are considered

to be minor. This may not, however, always be true since the

two models can rank items differently in more complex

situations where more items are involved.
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VII SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This thesis develops some cost/performance continuous

review models for high cost, low demand insurance items. The

nature of these low demand items suggested two possible

stocking alternatives. One was to stock just one unit and the

other was not to stock the item at all. The reorder point in

both cases was zero. The models optimized different objective

functions under the assumption of steady-state conditions with

annual demand being Poisson distributed. Both unconstrained

and constrained optimization were considered. The constraint

was the initial annual replenishment budget. The flow diagram

shown in figure 5.9 and the different ratios and conditions

presented in Appendix A, give a comprehensive procedure for

how to determine the optimal stocking solution. An example was

solved in chapter VI to demonstrate the solution process.

Different parametric analyses can increase the understanding

of the behavior of the optimal solution as a function of the

parameter's value. One example of such an analysis is

presented in chapter VI. It examined the effect of the initial

annual budget constraint on the constrained problem of this

thesis.
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B. CONCLUSIONS

The analyses showed that in the cases where supply MOEs

are considered, the objective function will always be improved

by stocking as many items (one unit from each item) as we can

,depending on the budget constraint. When expected annual

costs are used as MOE, this might not always be the case,

because stocking one unit of an item is not necessarily more

economical than not having it on the shelf.

The cost models are heavily dependent on the numeric values

of the shortage cost parameters associated with the items.

This can be viewed as a drawback of these models since these

parameters may be difficult to estimate. The supply

performance models are not influenced by these parameters.

They only depend on parameters such as annual demand,

procurement lead-time and the unit cost of the item. These are

typically available from historic data and are therefore more

easily estimated with much more confidence.

The supply MOEs enjoy an advantage over the cost models. In

the military environment they are often preferred because they

are associated with trying to keep the performance of weapon

systems as high as possible. In many cases we are willing to

accept a more expensive solution if it brings the system's
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performance measure up. In other words, we are willing to hold

the unit, even if it is expected to cause higher expense than

not stocking it, to achieve better supply MOEs and operational

MOE's.

C. RECOMMENDATIONS

This thesis effort was the beginning of the development of

models for managing slow moving items. Therefore it is too

early to recommend one for use by the Israeli Navy (IN). In

particular all objective functions presented in this thesis

will be new to that Navy and will need to be examined

carefully before further model development steps are taken. As

a consequence, three steps are recommended at this stage. They

are :

1. Introduce the models to the I.N. and conduct a

preliminary analysis to check the appropriateness of

MOEs such as MSRT and SMA and see if they will fit needs

and comply with the general philosophy of managing its

inventory.

2. For the cost models, it may be feasible to develop those

difficult costs parameters such as backorder costs for

items/technological groups (or other grouping methods)
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as is done now by the U.S Navy. In addition, a study

will need to be conducted to determine a method for

assessing the holding costs in the I.N.

3. Perhaps the logic used in this thesis could be

used for other populations of items. Maybe the models

can work also on cheap, high demand consumables in

addition to slow-moving insurance type items . The basic

steady-state formulas for any reorder point and order

quantity have been derived in chapter IV. These could be

used with more elaborate marginal analysis such as that

described in reference 10, for general stocking of

consumables.

Hopefully after these three steps are done and enough

evidence has been obtained on how successful the models might

be, we may be able to begin implementation of one or more of

the models derived in this thesis.
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APPENDIX A

TABLE A.1

SUMMARY OF STOCKING CONDITIONS AND MARGINAL RATIOS

Form of shor-
Type Objective tage cost of Condition/Marginal
of Function supply ratio's calculation for
Problem Tyne performance stocking a Slow Mover

Cost
Minimiza- EBO D >

tion 
A

A
0MTWUS D.CTI l

EBO + TWUS D > p(O) C.h +A'] -A'
A.p(O)

Cost EBO MCR- e-D' PCLT (A.D - h.C)
Minimiza- C
tion

TWUS MCR- A' - e - D ' PCLT [h.C + A']

E-4 0 EBO +TWUS MCRE eDPCLT (A-D - A'- h-C) + A'cc
0
U

Supply SMA MPR= De-DPCLT

MOE s

MSRT MPR= I - e D 'PCLT
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